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Summary: Hydrogenation, hydrosilylation and oxidation of the title 

butatriene was found to take place at C(l)=C(2) double bond 

exclusively. 

Although 1,2,3_butatrienes R2C=C=C=CR2 have been synthesized by various 

methods, their reactions seems to have remained unexplored.'-5) Butatrienes 

have sp-hybridized two central carbon atoms and two terminal sp2-carbon atoms, 

and their reactivity is expected to be totally different from allenes or 

dienes. In the preceding paper, we reported that the double silylation of 

bis(trimethylsilyl)butadiyne (1) opened an easy access to 1,1,4,4_tetrakis- 

(trimethylsilyl)butatriene (2). We studied various addition reactions to the 

carbon-carbon double bonds of 2. 

The hydrogenation of 26) with Rh-C, Pd-C, or Pt-C catalyst proceeded 

stepwise to give an allene 3 7, first, which was further reduced to a 2-butene 

58' under atmospheric pressure of hydrogen at room temperature. A regioisomer 

of 3, (Me3Si)2C=CH-CH=C(SiMe3)2, was not produced at all, although hydro- 
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genation of cis-1,4_diphenylbutatriene occurs at the central C=C bond to give 

1,4-diphenyl-1,3-butadiene.') The 71 electron cloud of C(2)=C(3) in 2 is 

heavily shielded by four bulky trimethylsilyl groups at C(1) and C(4), and 

probably the coordination of this bond to the catalyst is sterically 

disfavored. Hydrogenation of the allene 3 with Rh-C catalyst proceeded from 

less crowded side to give (2)-5 mainly. Reduction with Pt-C perhaps proceeded 

through an intermediary radical 4 to give rise to more stable (E)-5. In the 

same manner, hydrosilylation of 2 using trimethylsilane and Rh catalyst 

proceeded at C(l)=C(2) to afford 6 in 90 % yield, which remained intact due 

to remarkable steric hindrance by the silyl groups. 

Oxidation of 2') with m-chloroperbenzoic acid (m-CPBA) occurred at room 

temperature to give 9 in 60 % yield in sharp contrast to the reaction of 

1,1,4,4-tetraphenylbutatriene4) or tetraalkylbutatrienes. 5) Formation of 9 

is attributed to an facile isomerization of the initial epoxide 7 to an 

oxyallyl 8 followed by nucleophilic attack by the accompanying of m-chloro- 

benzoic acid (m-CBA). The reactivity difference of 2 and 1,1,4,4-tetraalkyl- 

butatrienes5) may be understood in terms of the B-cation stabilizing effect of 

the trimethylsilyl groups in the oxyallyl 8, which is captured by m-CBA before 

farther isomerization to a cyclopropanone.5'11) Reaction of 2 with benzoyl 

peroxide resulted in the elimination of 11. Initial addition of benzoyloxy 

radical to C(2) to give 10 followed by elimination of a trimethylsilyl radical 

should be the reaction course. Oxymetallation of 2 with Pb(OAc)4 or Mn(OAc)3 

gave bis(trimethylsilyl)butadiyne (1) as the major product along with a small 

amount of 11 (PhCOO = AcO). 
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